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Aging in an infinite-range Hamiltonian system of coupled rotators
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We analyze numerically the out-of-equilibrium relaxation dynamics of a long-range Hamiltonian system of
N fully coupled rotators. For a particular family of initial conditions, this system is known to enter a particular
regime in which the dynamic behavior does not agree with thermodynamic predictions. Moreover, there is
evidence that in the thermodynamic limit, whenN→` is taken prior tot→`, the system will never attain true
equilibrium. By analyzing the scaling properties of the two-time autocorrelation function we find that, in that
regime, a very complex dynamics unfolds, in whichaging phenomena appear. The scaling law strongly
suggests that the system behaves in a complex way, relaxing towards equilibrium through intricate trajectories.
The present results are obtained for conservative dynamics, where there is no thermal bath in contact with the
system.
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At the very foundations of statistical mechanics, there
still some hypotheses whose validity rests merely on the
trapolation of observational facts and that have to be justi
a posteriori. Among them, let us mention two assumptio
that are intimately related to the issue addressed in this pa
The first one refers to the introduction of a probabilistic d
scription of the evolution of a physical system. The secon
related to the mechanical specifications that a system m
fulfill so that the results of statistical mechanics can be
plied @1#. These two points are closely related to the fund
mental problem of establishing a connection between the
namical behavior of a system, described by the Hamilton
H, and its thermodynamics. In that sense, statistical mech
ics requires the existence of adequate conditions allowin
replace the dynamical temporal predictions by a probabili
ensemble calculation that yields the correct equilibriu
mean value of the relevant quantities.

A very fast relaxation and a high degree of chaos a
mixing are usually required in order to guarantee that a s
tem orbit will cover most of its phase space in a short tim
These questions have been extensively investigated for
dimensional systems, whereas, for extended systems,
infinite degrees of freedom, the matter is still far from sett
@2#.

Due to the analytical and numerical efforts of many a
thors, it is today a well established fact that even very sim
models, when analyzed in the thermodynamical limitN
→`, can yield results that bring to surface central questi
about the foundations of statistical mechanics. In particu
in this work, we will concentrate on an infinite-range~mean-
field! Hamiltonian system that, despite its simplicity, exhib
a very peculiar dynamical behavior: depending on the ini
preparation of the system its evolution can get trapped
trajectories that will prevent the system from attaining eq
librium in finite time when theN→` limit is taken before
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the t→` limit @3–8#. Unlike most models that display com
plex macroscopic behavior, this infinite-range model
cludes neither randomness nor frustration in its microsco
interactions. Furthermore, on one hand it can be exa
solved in the canonical ensemble, while on the other han
can be efficiently integrated in the microcanonical ensem
In that sense, it is an excellent starting point for analyz
the above mentioned basic questions.

The system consists ofN fully coupled rotators whose
dynamics is described by the following Hamiltonian:

H5
1

2 (
i

L i
21

1

2N (
i , j

@12cos~u i2u j !#[K1V. ~1!

It is worth mentioning that this is a rescaled version of
nonextensive infinite-range Hamiltonian@9#. However, both
of them share the same dynamical behavior after approp
rescaling of the dynamic variables.

In Fig. 1, we display the plot,T vs U, where T
52^K&/N is the temperature andU5(K1V)/N is the total
energy per particle. The solid line corresponds to the can

FIG. 1. The full line corresponds to the canonical theoreti
caloric curve and the symbols correspond to numerical simulat
for systems of sizeN51000 ~circles! and N55000 ~triangles!, at
t51000, averaged over 50 realizations. Initial conditions are ‘‘w
ter bag.’’
©2003 The American Physical Society06-1
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cal calculations@3#, which predict a second-order transitio
at Uc50.75. AboveUc , constant specific heat is found an
below Uc the system orders in a clustered phase. The s
bols correspond to the numerical results obtained by integ
ing the equations of motion forN51000, 5000 rotators and
until t51000. The system is initially prepared in a ‘‘wate
bag’’ configuration, that is, all the angles are set to zero wh
the momenta are randomly chosen from an uniform distri
tion such that the system has total energyNU. By measuring
the nonequilibrium temperature~or equivalently the magne
tization! of a system started in these out-of-equilibrium in
tial conditions, one observes that, for a range of energy
ues below the transition, the system enters in
quasistationaryregime characterized by a mean kinetic e
ergy that varies very slowly. Moreover, the value of this no
equilibrium temperature remains different from that p
dicted by canonical calculations. Actually, standa
equilibrium is attained only after a time which grows wi
the size of the system, hence an infinite system will ne
reach true equilibrium@7,8#. In the quasistationary regim
preceding equilibrium, trajectories are non-ergodic and
dynamics is weakly chaotic with Lyapunov exponent vani
ing in the thermodynamic limit@5#.

It is our objective here to show that the discrepancy
tween the results drawn from the dynamics and those der
from the canonical ensemble is closely associated to
presence of strong long-term memory effects and slow re
ation dynamics, a phenomenon usually namedaging. Aging
is one of the most striking features in the off-equilibriu
dynamics of complex systems. It refers to the presence
strong memory effects spanning time lengths that in so
cases exceed any available observational time. Although
ing has been seen in a wide variety of contexts and syst
@10#, some of them, actually very simple ones@2,11#, it is
perhaps in the realm of spin glass dynamics where a sys
atic study of these phenomena has been carried out~see Ref.
@10#, and references therein!. Systems thatage can be clas-
sified into dynamical universality classes according to
scaling properties of their relaxation function. Moreov
these scaling properties contribute to a quantitative desc
tion of complex phenomena, even in cases where a gen
theory is lacking@10,12#.

Aging can be characterized by measuring the two-ti
autocorrelation function along the system trajectories. If
state of the system in phase space can be completely ch
terized giving a state vectorxW , then the two-time autocorre
lation function is defined as follows:

C~ t1tw ,tw!5
^xW~ t1tw!•xW~ tw!&2^xW~ t1tw!&•^xW~ tw!&

s t1tw
s tw

,

~2!

where s t8 are standard deviations and the symbol^•••&
stands for average over several realizations of the dynam
In the case of a Hamiltonian system withN degrees of free-
dom the state vector is decomposed in coordinates and
conjugate momenta, therefore we establish the following
tation: xW[(uW ,LW ).
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For systems that have attained ‘‘true’’ thermodynamic
equilibrium, only time differences make physical sense wh
calculating relaxation quantities. In this case, it is expec
that on an average the system will show only very sh
memory of past configurations. However, for systems exh
iting aging, a complex time dependence is observed in
behavior ofC(t1tw ,tw), indicating long-term memory ef-
fects. In such a case, even at macroscopic time scales
two-time autocorrelation function shows an explicit depe
dence on both times (t and tw) together with a slow relax-
ation regime.

In order to integrate the motion equations numerically,
employed a fourth-order symplectic method@13# with a fixed
time step selected so as to keep a constant value of the
ergy within a relative errorDE/E of order 1024. All the
simulations were started from the water-bag initial con
tions explained above.

In Fig. 2, we present the results of the numerical calcu
tion of the two-time autocorrelation function~2! for U
50.69. This value of the energy, together with the water-b
initial conditions set the system into a particular dynami
regime, in which ensemble discrepancy is more pronoun
when finite size results are extrapolated to the thermo
namic limit. In the graph, features characteristic of agi
phenomena can be distinguished. For a giventw the system
first enters a quasiequilibrium stage, in the sense that tem
ral translational invariance holds, withC(t1tw,tw)'1, up
to a time of ordertw . After that, the system enters a seco
relaxation characterized by a slow power law decay an
strong dependence on both times. This phenomenology
be clearly seen in the curves for the largesttw’s.

In Fig. 3, we show the best data collapse for the long-ti
behavior of the autocorrelation function, using the data
Fig. 2 corresponding to the three largest waiting timestw
52048, 8192, and 32 768!. The resulting scaling law clearly
indicates that for the whole range of values oft/tw consid-
ered,

FIG. 2. Two-time autocorrelation functionC(t1tw ,tw) vs t for
systems of sizeN51000 and energy per particleU50.69. The data
correspond to an average over 200 trajectories initialized in wa
bag configurations. The waiting times aretw58, 32, 128, 512,
2048, 8192, and 32 768.
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C~ t1tw ,tw!5 f S t

tw
b D , ~3!

where f (t/tw
b);(t/tw

b)2l. It is worth mentioning that this
scaling is the same as observed experimentally in spin g
systems@14#. The values obtained for the scaling paramet
are b'0.90 andl'0.74. In the inset, we exhibit an alte
native representation of the data which yields a linear plo
corresponds to lnq@C(t1tw ,tw)# vs t/tw

b , where the function
lnq(x), namedq logarithm, is defined as follows@15#:

lnq~x!5
x12q21

12q
. ~4!

In this expression,q5111/l, which for the data in Fig. 2,
yields q'2.35. Therefore, we can obtain a complete fun
tional form of the autocorrelation function valid over th
whole range of the scaling variablet/tw

b just by identifying
the functionf (x) in Eq. ~3! with the inverse of lnq(x), that is,
the q exponential@15#:

f ~x![eq
2x5@12~12q!x#

1
12q, ~5!

which naturally arises within the nonextensive statistics
troduced by Tsallis inspired by the probabilistic descripti
of multifractal geometries@16#. The same qualitative behav
ior has been observed for other systems sizes, nameN
5500, 2000.

This aging scenario contrasts with the time invariant
havior observed within the high energy phase, where no q
sistationary regime is detected. In fact, let us discuss Fi
where we present the results of the calculation of the tw
time autocorrelation function~2! for U55.0, well above the
second-order phase transition~i.e., inside the homogeneou
phase!, with water-bag initial conditions. What we observ
here is essentially that the autocorrelation function depe
on the two times only through their difference, that is,C(t

FIG. 3. Data collapse for the long-time behavior of the autoc
relation functionC(t1tw ,tw). The data are the same shown in F
2 for the three largesttw . The gray solid line corresponds t
eq(20.2t/tw

b). Inset: lnq-linear representation of the same da
with q.2.35.
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1tw ,tw)'C(t). Therefore, the presence of aging is related
the existence of quasistationary states. It is important to
phasize that, although the dynamics presents temporal tr
lational invariance in the high energy regime, the relaxat
of the system is very slow.

There is nowadays growing evidence that aging is a v
common dynamical phenomenon, associated to a great
ety of physical systems. So far, there are two scena
within which aging can emerge. On one hand, the onse
aging in many systems derives from the presence of co
ening processes that give place to critical slowing down
the dynamics. In this case the scaling law of the two-tim
autocorrelation function is ruled by the following expressi

C~ t1tw ,tw!; f „L~ t !/L~ tw!…, ~6!

whereL(t) is the mean linear size of the domains at timet
@17#. On the other hand, aging also appears as a consequ
of weak ergodicity breaking@10# and it is related to the com
plex fractal structure of the region of phase space that
system explores in time. This is the case, for instance, in
Sherrington-Kirkpatrick~SK! model and other spin glas
models in which the complexity of the energy landscape
associated to a certain degree of randomness and/or fru
tion in the Hamiltonian.

What is particularly remarkable in this work is the appe
ance of a complex aging behavior in amean-fieldmodel
lacking both randomness and frustration. Since the mode
are analyzing in this paper is an infinite-range one, such
the SK model, a coarsening scenario has to be ruled out f
the outset. Furthermore, all our results are obtained in a c
servative system without any thermal bath in contact with

Moreover, it is worth noting that the scaling law found fo
the two-time autocorrelation functions below the transitio
where a quasistationary regime is detected, points to a
nario very similar to that observed in spin glasses@14#. As
occurs in spin glasses, there is weak breakdown of ergo
ity, which is consistent with the observation of weakly ch

-

,

FIG. 4. Two-time autocorrelation functionC(t1tw ,tw) vs t for
systems ofN51000 andU55.0. The data correspond to an ave
age over 10 trajectories initialized in water-bag configurations. T
waiting times aretw58, 32, 128, 512, 2048, 8192, and 32 76
Inset: semilog representation of the same data.
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otic orbits, i.e., with a vanishing Lyapunov exponent in t
thermodynamic limit@5#. Drawing the analogy with spin
glasses even further, our results seem to confirm that
system visits phase space confined inside very intricate
jectories ~presumably nonergodic!. This conjecture is also
supported by features observed inm space@6–8#. The fact
that the relaxation of the two-time autocorrelation functi
can be well fitted by aq-exponential decay over the who
range oft/tw deserves further investigation. Although a po
sible connection with nonextensive statistics@16# is still not
clear, we believe that it would be interesting to examine t
possibility.

In summary, in this paper we have characterized the s
relaxation dynamics of a long-range Hamiltonian syst
03110
he
a-

-

s

w

through its aging dynamics. Our observation of the existe
of aging in this Hamiltonian system and its characterizat
by scaling properties reminiscent of spin glass dynamics
result that can contribute to establish a unified frame for
discussion of the out-of-equilibrium dynamics of system
with many degrees of freedom.
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